
March 16, 2006     Linguist's Guide to Python   http://zacharski.org/books/python-for-linguists/

4     Basic Python Programming:

 Some Practice and if

In this tutorial we will slow down a bit. You’ll learn a few new things including how to write to a file. For the  
most part, though, we will be combining things you already know in different ways to give you a bit of practice. 

4.1 Fun with files
Download the file harryPotter.txt from the website (http://www.zacharski.org/python). (The file contains a few 
lines from J.K. Rowling's Harry Potter and the Socercer's Stone) Can you write a function that opens the file, 
reads the lines of the file into a list, closes the file, and then prints the lines to the screen?  Try to write this on  
your own before proceeding.

Try it now on your own!

Let’s look at one way of doing this. We want to write a function that will:

1) open the file harryPotter.txt
2) read the lines of the file into a list
3) close the file
4) print the lines to the screen.

Let’s call the function print_file:

def print_file():
    """read a file and then print the lines to the screen"""
    #1) open the file harryPotter.txt



64

    #2) read the lines of the file into a list
    #3) close the file
    #4) print the lines to the screen.

   
We know how to do steps 1, 2, and 3:

def print_file():
   """read a file and then print the lines to the screen"""
   infile = open(r'C:\AI\python\book\harryPotter.txt', 'r') 
   lines = list(infile)
   infile.close()
   #4) print the lines to the screen.

   
In our discussion of the for loop in the previous tutorial, we saw how you can print the contents of a list:

>>> for noun in ['dog', 'cat', 'poodle', 'Maine Coon cat']:
...     print noun

Using this information we can fill in step 4 of our printFile function:

def print_file():
   """read a file and then print the lines to the screen"""
   infile = open(r'C:\AI\python\book\harryPotter.txt', 'r')
   lines = list(infile)
   infile.close()
   for line in lines:
       print line

When we run this function we get:

>>> print_file()
“This way!” Harry mouthed to the others and, petrified, they began to 

creep down a long gallery full of suits of armor. They could hear 

Filch getting nearer. Neville suddenly let out a frightened squeak 

and broke into a run.

“RUN!” Harry yelled, and the four of them sprinted down the gallery 

not looking to see whether Filch was following. Harry in the lead, 

they  ripped through a tapestry. 

“I think we lost him,” Harry panted. 

Ron looked shocked.

Harry shook his head.

Now lets make a number of modifications to this function. (The answers are in the solutions section at the end of 
this tutorial.)



65

4.1.1 Double space to single space
When you look at the file harryPotter.txt you’ll notice that the lines are single spaced but when you print the file  
with print_file you get a blank line appearing between each line. Why is this? There are two (or more) possible  
fixes to this problem. Can you name them and alter the function to incorporate one of the fixes? 

4.1.2 Replacing a string
Can you print the file to the screen as before, but this time, replace every occurrence of Harry with your favorite 
name? So, for example, if we replace every occurrence with Jose Guerra the output would be something like:

“This way!” Jose Guerra mouthed to the others and, petrified, they began to
creep down a long gallery full of suits of armor. They could hear
Filch getting nearer. Neville suddenly let out a frightened squeak
and broke into a run.
“RUN!” Jose Guerra yelled, and the four of them sprinted down the gallery
not looking to see whether Filch was following. Jose Guerra in the lead,
they  ripped
through a tapestry.
“I think we lost him,” Jose Guerra panted.
Ron looked shocked.
Jose Guerra shook his head.

4.2 Writing to a file.
Writing to a file is similar to reading from a file. First you open the file for writing:

>>> outfile = open(r'C:\AI\python\my_output_file.txt', 'w')

To write text to a file you use the write method:

>>> outfile.write('This is the first line\n')

Finally, you close the file:

>>> outfile.close()

Let’s write a function that takes two arguments: an input file name, and an output file name. It reads the lines  
from the input file and writes them to the output file. A few pages ago we wrote the following function to print a 
text file to the screen:

def print_file():
   """read a file and then print the lines to the screen"""
   infile = open(r'C:\AI\python\book\harryPotter.txt', 'r')
   lines = list(infile)
   infile.close()
   for line in lines:
       print line

Let’s use this function as a basic template. First, let’s change the name of the function to make_story and alter it 
so it takes two arguments:

def make_story(inputfilename, outputfilename):



66

   """read a file and then copies it to an output file"""
   infile = open(r'C:\AI\python\book\harryPotter.txt', 'r')
   lines = list(infile)
   infile.close()
   for line in lines:
       print line

Next, let’s change the line where we open the input file to make use of the inputfilename argument:

def make_story(inputfilename, outputfilename):
   "read a file and then copies it to an output file"
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   for line in lines:
       print line

Now we need to add the lines that open and close the output file:

def make_story(inputfilename, outputfilename):
   """read a file and then copies it to an output file"""
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   outfile = open(outputfilename, 'w')
   for line in lines:
       print line
   outfile.close()

        
Finally, we change the print line to one that writes to the file:

def make_story(inputfilename, outputfilename):
   """read a file and then copies it to an output file"""
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   outfile = open(outputfilename, 'w')
   for line in lines:
       outfile.write(line)
   outfile.close()

Now, just to make the program a bit fancier, let’s add raw_input functions to ask the user for the filenames:

# make_story.py

def make_story(inputfilename, outputfilename):
   """read a file and then copies it to an output file"""
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   outfile = open(outputfilename, 'w')
   for line in lines:
       outfile.write(line)
   outfile.close()



67

in_name  = raw_input('Enter input filename:')
out_name = raw_input('Enter output filename')
make_story(in_name, out_name)

When you run this program, you will get dialog boxes appearing that ask for the two filenames. The program  
then copies the text from the input file to the output file. 

4.2.1 Your Job—should you choose to accept it.
I’d like you to alter make_story.py so it will replace various character names with names of your choosing—just 
like you did before.1 The first thing you will need to do is to get some stories to work with. One good site is 
Project Guttenberg (http://promo.net/pg/). On that website, select the ‘browse’ function and download a few fun 
texts.

Here are a few examples:

Tarzan of the Apes (replacing ‘Tarzan’ with ‘Winnie the Pooh’)

Not so, however, with Winnie the Pooh, the man-child.  His life
amidst the dangers of the jungle had taught him to meet
emergencies with self-confidence, and his higher intelligence
resulted in a quickness of mental action far beyond the powers
of the apes.

So the scream of Sabor, the lioness, galvanized the brain
and muscles of little Winnie the Pooh into instant action.

Before him lay the deep waters of the little lake, behind
him certain death; a cruel death beneath tearing claws and
rending fangs.

Winnie the Pooh had always hated water except as a medium for
quenching his thirst.  He hated it because he connected it with
the chill and discomfort of the torrential rains, and he feared
it for the thunder and lightning and wind which accompanied them.

Tom Swift and His Airship
(replacing Tom with Peter, and Swift with Zacharski)

Peter Zacharski, the young inventor, whose acquaintance some of you have
previously made, gave one look at the gauge, and seeing that the
pressure was steadily mounting, endeavored to reach, and open, a stop-
cock, that he might relieve the strain. One trial showed him that the
valve there had jammed too, and catching up a roll of blue prints the
lad made a dash for the door of the shop. He was not a second behind
his companion, and hardly had they passed out of the structure before
there was a loud explosion which shook the building, and shattered all
the windows in it.

1 This idea is from Jen Doyon. See http://www.georgetown.edu/cball/perl/perl-11.html

http://promo.net/pg/


68

Pieces of wood, bits of metal, and a cloud of sawdust and shavings
flew out of the door after the man and the youth, and this was
followed by a cloud of yellowish smoke.

"Are you hurt, Peter?" cried Mr. Sharp, as he swung around to look back
at the place where the hazardous experiment had been conducted.

You can download the text of Peter Pan from http://www.zacharski.org/python

4.3 Sorting and reporting

4.3.1  Sorting a file.
Recall that you can sort a list as follows:

>>> a = ['Clara', 'Sara', 'Ann', 'Ben', 'Hillary', 'Adam']
>>> a.sort()
>>> a
['Adam', 'Ann', 'Ben', 'Clara', 'Hillary', 'Sara']
>>>

Can you write a program that will take an input file like:

Carloz Alverez     551-1332
Marcia O’Rourke    523-6671
Lily McMaster      732-1921
Adam Nowicki       282-8992
Terumi Yobuko      451-3290
Jonathan Ginsberg  646-9902
Susie Swarton      951-6520
Peter Grayson      721-1205
Christine Mansouri 721-1207
John Adams         646-6521
Antonio Folerin    523-6673

(you can get this file, addresses.txt,  at  http://www.zacharski.org/python) and produce a output file where the 
lines are sorted alphabetically? 

Adam Nowicki       282-8992
Antonio Folerin    523-6673
Carloz Alverez     551-1332
Christine Mansouri 721-1207
John Adams         646-6521
Jonathan Ginsberg  646-9902
Lily McMaster      732-1921

http://www.zacharski.org/python


69

Marcia O’Rourke    523-6671
Peter Grayson      721-1205
Susie Swarton      951-6520
Terumi Yobuko      451-3290

For hints see the hints section at the end of this tutorial.

4.3.2  Splitting
Let’s say you have the following string:

>>> a = "Pregunta si nos vamos a quedar mucho tiempo"

You can convert this string into a sequential list of words by using the split method:

>>> b = a.split()
>>> b
['Pregunta', 'si', 'nos', 'vamos', 'a', 'quedar', 'mucho', 'tiempo']

What the split method does is split the string based on occurrences of spaces.  Also recall that you can join two  
lists as follows:

>>> c = ['Ya', 'te', 'pedi', 'disculpas']
>>> c
['Ya', 'te', 'pedi', 'disculpas']
>>> b = b + c
>>> b
['Pregunta', 'si', 'nos', 'vamos', 'a', 'quedar', 'mucho', 'tiempo', 'Ya', 
'te', 'pedi', 'disculpas']
>>> 

Now, knowing this, can you write a function that reads in a text file and prints a list of all the words in the file  
sorted alphabetically?  That is, given the Harry Potter text

“This way!” Harry mouthed to the others and, petrified, they began to 
creep down a long gallery full of suits of armor. They could hear 
Filch getting nearer. Neville suddenly let out a frightened squeak 
and broke into a run.
“RUN!” Harry yelled, and the four of them sprinted down the gallery 
not looking to see whether Filch was following. Harry in the lead, 
they  ripped
through a tapestry. 
“I think we lost him,” Harry panted. 
Ron looked shocked.
Harry shook his head.

Your program would output:

>>> sort_words_in_a_file(r"d:/AI/Python/book/harryPotter.txt")
Filch
Filch
Harry
Harry
Harry
Harry
Harry
Neville



70

Ron
They
a
a
a
a
and
and
and,
armor.
began

For one solution see the solutions section at the end of this chapter. Also note that the sort function sorts capital  
letters ahead of lower case ones. 

4.3.3 Reporting
To tell how many characters there are in a string you can use the len function:

>>> s1 = 'agua'
>>> len(s1)
4
>>> s2 = 'Estás bien seguro de que es agua la que vaciaste en el bebedero?'
>>> len(s2)
64

You can also use the len function to count how many elements are in a list:

>>> c = ['Ya', 'te', 'pedi', 'disculpas']
>>> len(c)
4
>>>

Can you write a function that reads in a file and reports how many characters, words, and lines are in the file?  
For example:

>>> wc(r'C:\AI\python\book\harryPotter.txt')
C:\AI\python\book\harryPotter.txt:
   Total characters:  461
   Total words:       83
   Total lines:       11

Try it now on your own!
One solution is shown at the end of this chapter.

4.4 The if statement
In chapter 2 we described how to find out if an item is in a list:

>>> linguists = ['Ann', 'Ben', 'Polly', 'Dora']
>>> 'Polly' in linguists
True



71

>>> 'Steve' in linguists
False

and we mentioned that 'True' denotes a 'yes' answer and 'False' denotes 'no'. Suppose we want to have a print  
statement execute conditional on the answer to this true/false query—something like “If Polly is a linguist print  
'Polly is smart'. We can do this by using the if statement:

>>> if 'Polly' in linguists:
...     print 'Polly is a linguist'
... 
Polly is a linguist 

The template of this statement is:

if expression:
    code block

If  the  expression  part  of  the  if-statement  evaluates  to  False  then  the code  block  is  skipped;  otherwise  the 
statements in the code block execute. The code block can consist of one or more lines of Python statements: 

>>> if 'Polly' in linguists:
...     print 'Polly is a linguist'
...     print 'Polly is smart'
... 
Polly is a linguist
Polly is smart 

The if-statement can have an else clause. So, for example, we can define the function is_linguist:

def is_linguist(name):
    """check to see if name is a linguist"""
    if name in ['Ann', 'Ben', 'Sally', 'Polly']:
        print name + ' is a linguist'
    else:
        print name + ' is not a linguist'

   
and we can try this function out:

>>> is_linguist('Polly')
Polly is a linguist
>>> is_linguist('Abe')
Abe is not a linguist

An if-statement can also contain an else if clause (which is coded as elif):

def is_what(name):
    """check the occupation of the person named name"""
    if name in ['Ann', 'Ben', 'Sally', 'Polly']:
        print name + ' is a linguist'
    elif name in ['Abe', 'Bebe', 'Clara']:
        print name + ' is a pianist'
    else:
        print "I'm not sure what " + name + ' does'

>>> is_what('Sally')
Sally is a linguist



72

>>> is_what('Clara')
Clara is a pianist
>>> is_what('Steve')
I'm not sure what Steve does
>>> 

Finally, an if-statement can have multiple elif clauses:

if name in ['Ann', 'Ben', 'Sally', 'Polly']:
    print name + ' is a linguist'
elif name in ['Abe', 'Bebe', 'Clara']:
    print name + ' is a pianist'
elif name in ['Jim', 'Francis', 'Jewel']:
    print name + ' is a writer'
else:
    print "I'm not sure what " + name + ' does'

4.4.1 A detailed look at if-statement expressions.
Again, the if-statement template is:

if expression:
    code block

and if the expression evaluates to False then the code block is skipped, otherwise the block is executed. Let's 
spend a bit of time discussing what can be an expression. 

The expression can be one of the following arithmetic comparison operators:

Operator Function

a == b a is equal to b

a != b a is not equal to b

a < b a is less than b

a > b a is greater than b

a <= b a is less than or equal to b

a >= b a is greater than or equal to b

>>> a = 4
>>> a < 5
True
>>> a < 2
False
>>> a > 0
True
>>> a > 10
False
>>> a == 4
True
>>> a == 5



73

False
>>> a != 5
True
>>> len('this') > 5
False
>>> len('this') == 4
True
>>> len('comparison')
10
>>> len('reference') == len('magnitude')
True 

These operators can also be applied to strings. If a and b are strings a < b is interpreted as does a come before b  
in alphabetically.

>>> 'adam' < 'ben'
True
>>> 'ben' < 'adam'
False
>>> name = 'Adam'
>>> name == 'Adam'
True 

A common program error is to confuse the '=' and'==' operators, as in

>>> name = 'Adam'
>>> name == 'Adam'

The first, (name = 'Adam') is an assignment operation—we assign the name  name to the value 'Adam'. The 
second (name == 'Adam') is a comparison operation—we are asking whether the value of  name  is equal to 
'Adam'.

We can also use the Boolean operators and, or, and not in expressions:

>>> age = 15
>>> age < 20 and age > 10
True
>>> name = 'Ann'
>>> name == 'Ann' or name == 'Alice' or name == 'Fred'
True
>>> name = 'Brenda'       name now equals “Brenda”
>>> name == 'Ann' or name == 'Alice' or name == 'Fred'
False
>>> not name == 'Ann'     “Brenda” does not equal “Ann”
True

Finally, there are a number of string expressions. Some of the more useful ones are shown in the following table:

Expression Function Example  

string.startswith(str) Returns  True  if  the   string 
starts  with  the  string  str  and 
returns False othewise.

a = 'theory'

b = '1997'

a.startswith('the')



74

Expression Function Example  

True

b.startswith('the')

False

string.endswith(str) Returns True is the string ends 
with the string str

a.endswith('y')

True

a.endswith('eory')

True

b.endswith('y')

False

string.isalpha() Returns True if the string only 
alphabetic 

a.isalpha()

True 

b.isalpha()

False

string.isdigit() Returns  True  if  the  string 
contains only digits.

a.isdigit()

False

b.isdigit()

True

string.isspace() Returns  True  if  the  string 
contains only spaces.

a.isspace()

False

c = '          '

c.isspace()

True

string.islower() Returns  True  if  the  string 
contains all lower cased letters

a.islower()

True

b.islower()

False

string.isupper() Returns  True  if  the  string 
contains  all  upper  cased 
letters.

a.isupper()

False

d = 'THEORY'

d.isupper()

True

Suppose I want to write a function license that takes an integer as an argument. If the integer is equal or larger  
than 18, it outputs Old enough to get a license. Otherwise it outputs Too young.  A skeleton of this function is 



75

def license(age):
    """Check if age is at least 18 so person can get license"""
    if blah blah blah:
        print "Old enough to get a license"
    blah blah blah
        blah

You need to determine what the blah blah blahs should be.

Try it now on your own!
One solution is shown at the end of this chapter.

4.4.2 A challenge
Consider the following example:

def three_letter_words(input):
    """print the three letter words that occur in the input"""
    # first split the input into a list
    in_list = input.split()
    # now loop through the list
    for word in in_list:
        # print each word
        print word

Here's what happens when we run it:

>>>  three_letter_words('The  dog  saw  the  lazy  cat  chasing  the  big  rat')
The
dog
saw
the
lazy
cat
chasing
the
big
rat
>>> 

1) Can  you  alter  this  function  so  it  only  prints  words  that  are  three  letters  long?
If you are having problems look at the hint section at the end of this tutorial.

2) Can you alter the function you just wrote so it takes two arguments: a string, and an integer specifying the  
length of the words to retrieve. That is letter_words(sentence, 3) will retrieve all the three letter 
words in sentence and letter_words(sentence, 4)will retrieve all the four letter words. 

Try it now on your own!
One solution is shown at the end of this chapter.



76

4.4.3  Another example 
Suppose I have a list of determiners:

det = ['a', 'the', 'this', 'that', 'these', 'those']

and a list of prepositions:

prep = ['of', 'in', 'by', 'to', 'on']

I want to write a function, tag, that takes as input a sentence, tags the determiners and prepositions with their  
parts of speech and returns a sentence with these tags. For example, 

>>> tag('this dog gave the cheese to those mice on the mat.')
this-det dog gave the-det cheese to-prep those-det mice on-prep the-det mat. 

The rough outline of what the function might look like is shown here:

def tag(input):
    """Tag the determiners and prepositions in the input"""
    # specify the determiner and preposition lists
    # initialize the result string
    # for each word in the input
        # if the word is a determiner add it and the det tag to
        # the result string
        # else if the word is a preposition add it plus 
        # the prep tag to the result string
        # else just add the word to the result string 

    # return the result 

If you don't  have an extremely clear picture of how to write a particular function it is often a good idea to 
simplify the function to something you know. For example, we can simplify the tag function to:

def tag(input):
    """Tag the determiners and prepositions in the input"""
    # initialize the result string
    # for each word in the input
        # add the word to the result string 

    # return the result 

Stop reading, code this function and test it out.

If you are having problems go back through this tutorial and find a similar example.

How did you do? I imagine you came up with something similar to the following:

def tag(input):
    """Tag the determiners and prepositions in the input"""



77

    # initialize the result string
    result_string = ''
    word_list = input.split()
    # for each word in the input
    for word in word_list:
        # add the word to the result string
        result_string = result_string + word + ' '

    # return the result
    return result_string

Now we only have the highlighted parts remaining to be coded:

def tag(input):
    """Tag the determiners and prepositions in the input"""
    # specify the determiner and preposition lists
    # initialize the result string
    result_string = ''
    word_list = input.split()
    # for each word in the input
    for word in word_list:
        # if the word is a determiner add it and the det tag to
        # the result string
        # else if the word is a preposition add it plus 
        # the prep tag to the result string
        # else add the word to the result string
        result_string = result_string + word + ' '

    # return the result
    return result_string

Specifying the determiner and proposition lists can be done by:

# specify the determiner and preposition lists
det = ['a', 'the', 'this', 'that', 'these', 'those']
prep = ['of', 'in', 'by', 'to', 'on']

Checking to see if a word is a determiner can be done by checking whether the word is in the determiner list:

if word in det:    

So our revised function is:

def tag(input):
    """Tag the determiners and prepositions in the input"""
    # specify the determiner and preposition lists
    det = ['a', 'the', 'this', 'that', 'these', 'those']
    prep = ['of', 'in', 'by', 'to', 'on']
    # initialize the result string
    result_string = ''
    word_list = input.split()



78

    # for each word in the input
    for word in word_list:
        # if the word is a determiner add it and the det tag to
        # the result string
        if word in det:
            result_string = result_string + word + '-det '
        # else if the word is a preposition add it plus 
        # the prep tag to the result string
        # else add the word to the result string
        else:
            result_string = result_string + word + ' '

    # return the result
    return result_string

and we can test this function:

>>> tag('this dog gave the cheese to those mice on the mat.')
'this-det dog gave the-det cheese to those-det mice on the-det mat. '

Finally, we can add the test for prepositions:

def tag(input):
    """Tag the determiners and prepositions in the input"""
    # specify the determiner and preposition lists
    det = ['a', 'the', 'this', 'that', 'these', 'those']
    prep = ['of', 'in', 'by', 'to', 'on']
    # initialize the result string
    result_string = ''
    word_list = input.split()
    # for each word in the input
    for word in word_list:
        # if the word is a determiner add it and the det tag to
        # the result string
        if word in det:
            result_string = result_string + word + '-det '
        # else if the word is a preposition add it plus 
        # the prep tag to the result string
        elif word in prep:
            result_string = result_string + word + '-prep '
        # else add the word to the result string
        else:
            result_string = result_string + word + ' '

    # return the result
    return result_string

4.4.4 A stop list
In section 4.3.2 above, you wrote a function that reads in a text file and prints a list of all the words in the file  
sorted alphabetically.  Now I'd like to change that function as follows. In addition to the file  containing the  
English text, you have a text file that contains a list of words that you do not want to appear in the output. For 
example, this stop list file might contain the following words:

stoplist.txt



79

a
A
the
The 
and
or
on
under
in
by 
it
them
they
that

and the text to analyze is:

story.txt

The posters show crop circles, those huge geometric shapes
in fields of corn and wheat, which were seen all over the
world in the 1970s. Their origin was explained in 1991 when
several hoaxers came forward and demonstrated how they made
them; it was not difficult, they said. Like many supernatural
events, however, crop circles live on after their unmasking,
and most people today have forgotten, or never knew, that they
were explained. "Signs" uses them to evoke the possibility that ...
well, the possibility of anything.

Then the function call:

>>> sort_words_in_a_file('story.txt','stoplist.txt')

Would print a sorted list of the words in the file that were not in the stoplist.
One possible solution to this problem is shown at the end of this tutorial.

4.5  While
The while statement is a looping statement of the form:

while expression:
code block to repeat

Before I talk about  while I should mention that if you ever mess something up rather badly and the Python 
interpreter appears to be locked up, you often fix it by right-clicking the PythonWin icon in the system tray (in  
the lower right corner) and selecting “Break into running code”.  



80

If that doesn’t work, you can always exit by clicking on the standard windows close button—the 'x' in the top  
right of the window.  
With that warning, let's dive into while.  Here's an example:

>>> i = 0
>>> while i < 5:
... print i
... i = i + 1
... 
0
1
2
3
4

Let's  go through this step by step.  The first thing I did was set  i  equal to 0. The next line starts the while 
statement.  The expression  i <  5 is  true so the code block executes—i  is  printed (in  this  case  '0')  and  i  is 
incremented by 1, so i now equals 2. Now we are at the end of the code block so we return to the while statement 
(while i < 5:); i is smaller than 5 ( 2 < 5)  so we execute the while loop printing i and incrementing i. Let's skip 
ahead a bit and consider the iteration where i is equal to 4. In this case, i < 5 still holds, we print i and increment 
it so now i equals 5.  Now the while expression i < 5 evaluates to False and we skip the code block.

The warning I mentioned earlier occurs when you erroneously create an infinite loop by doing something like 
the following:

i = 0
while i < 5
   print i

Since i is never incremented i < 5 is always true and we are in an infinite loop of printing '0'.

4.5.1 A guessing game using while.
Let's quickly review the information about the random module, which we discussed in chapter 2. Before we can 
use any functions in a module we need to import the module using the 'import' statement.  So to import 'random' 
we use:

>>> import random

We can use the choice function in the random module to select a random element from a list:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> random.choice(a)
6

To select  a random number between 0 and 100,  we could create a list  of  100 elements  and use the choice  
function.  However,  there is another  way.  The random module  has a function called 'randint'  that  takes  two 
integer arguments and returns a random integer between those two integers. For example,

>>> random.randint(0, 100)



81

will return a random integer between 0 and 100. Let's use this function to create a guessing game function. The  
function will first select a random number and then allow the user to guess the number. If the user's guess is  
incorrect it will keeping asking the user until the correct number is guessed. For example:

>>> guess()
What is your guess? 51
No, that's not it. What is your guess? 25
No, that's not it. What is your guess? 77
...
No, that's not it. What is your guess? 63
You guessed it!

We can create such a guessing function using a while loop.  The rough outline is

def guess():
    """Guess the number"""
    # choose a random number from 0 - 100
    # get user guess
    # while the guess is not correct
        # get a user guess 
    # print congratulations message

We are going to get a user guess by using the function  raw_input. Recall that raw input returns a string, 
which we will need to convert to an integer:

a = int(raw_input('What is your guess?'))

Here's the complete function. 

def guess():
    """Guess the number"""
    # choose a random number from 0 - 100
    num = random.randint(0, 100)
    # get user guess
    a = int(raw_input('What is your guess?'))
    # while the guess isn't correct
    while a != num:
        # get another user guess
        a = int(raw_input('Nope. What is your next guess?'))
    print "You guessed it!"

Can you alter this program so it gives the user clues. For example:

>>> guess()
What is your guess? 50
Too high. Try again 25
Too high. Try again 12
Too low. Try again 18
Too low. Try again 21
You guessed it!



82

4.5  Summary
Throughout this chapter we have been using bits that we have learned in other chapters and combining those bits  
in various ways to do interesting things. Feel free to experiment and try your own exercises.  Don’t worry if your  
functions aren’t perfect. For example, when we wrote a function to sort the words in a file, we didn’t eliminate  
duplicate words—if there were 37 occurrences of ‘a’ we printed all 37 of them—and we didn’t worry about  
punctuation or capitalization (The, “The, and ‘the’ were all sorted in different places in the list). Nevertheless, 
the program you did write was pretty cool. 



83

5 Hints

sorting a file
You can start with the make_story function:

def make_story(inputfilename, outputfilename):
   """read a file and then copies it to an output file"""
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   # ??????????????????
   outfile = open(outputfilename, 'w')
   for line in lines:
       outfile.write(line)
   outfile.close()

You will need to add one line right where I put the ‘???????’ comment.

Another hint:
The lines read from the input file are in a list. Is there a way to sort the list?
For a solution, see the following “Solutions” section.

4.4.2 A challenge

Hint 1
What part of the function do we need to alter?  It's the section I highlight here in bold.

def three_letter_words(input):
    """print the three letter words that occur in the input"""
    # first split the input into a list
    in_list = input.split()
    # now loop through the list
    for word in in_list:
        # print each word
        print word

In English, we need to add something like the following:

def three_letter_words(input):
    """print the three letter words that occur in the input"""
    # first split the input into a list
    in_list = input.split()
    # now loop through the list
    for word in in_list:
        # if the word is a 3 letter word
           # print each word
           print word

83



84

Hint 2:

How do we test whether a word is a three letter word? The answer is in this footnote.2

Solutions

3.1.1 Double space to single space
The print statement inserts a newline the end of the string. So, for example:

def print_some_lines():
    print 'This is line one'
    print 'and line two'
    print 'and line three'

prints

>>> print_some_lines()
This is line one
and line two
and line three

(A newline is printed at the end of every print statement.)

When you read the lines of a file the newlines are preserved. That is, if the file looks like:

This is line one
and line two
and line three

when you read the lines in as in:

lines = list(infile)

the list, lines, will be

['This is line one\n', 'and line two\n', 'and line three\n']

When you write the statement

>>> print lines[0]

two consecutive newlines will be printed. The first comes from the string, 'This is line one\n' 
itself. The second comes from the print statement.

2len(word) == 3

84



85

Two methods for solving the problem
To solve the problem you can either remove the newline from the string using the replace method, 
which we covered in section 3.2.2. of the third tutorial. Another alternative is to prevent print  
from adding a newline. This is accomplished by adding a terminating comma to the statement:

print lines[0],

3.2 Replacing a substring
You can use the replace function:

line = line.replace(‘Eddie Willers’, ‘Carlos Montero’)

4.3.1 sorting a file

def sort_file(inputfilename, outputfilename):
   "sort lines in a file"
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   lines.sort()
   outfile = open(outputfilename, 'w')
   for line in lines:
       outfile.write(line)
   outfile.close()

4.3.2 sorting words in a file
There are a number of improvements that can be made to this function. We’ll look at solutions to 
these in the next chapter.

def sort_words_in_a_file(inputfilename):
   """sort words in a file"""
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   # this is the list of words, initially empty
   words = []
   for line in lines:
       # add the words in this line to the word list
       words = words + line.split()
   # now sort the word list
   words.sort()
   # and print the results
   for word in words:
       print word

85



86

4.3.3 reporting

def wc(inputfilename):
   """reports on characters, words, and lines in a file"""
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   # set initial counts to zero
   words = 0
   chars = 0
   num_lines = 0
   for line in lines:
       # increment the line count
       num_lines = num_lines + 1
       # add number of characters in line to total
       chars = chars + len(line.strip())
       words = words + len(line.split())
   # now print results
   print inputfilename + ':'
   print '   Total characters: ',
   print chars
   print '   Total words:      ',
   print words
   print '   Total lines:      ',
   print num_lines
          

4.4 if statements

4.4.1.a  - Old enough for drivers' license?
def license(age):
    """Check if age is at least 18 so person can get license"""
    if age >= 18:
        print "Old enough to get a license"
    else:
        print "Too young"

4.4.3A challenge

def three_letter_words(input):
    """print the three letter words that occur in the input"""
    # first split the input into a list
    in_list = input.split()

86



87

    # now loop through the list
    for word in in_list:
        # if word is 3 letters long
        if len(word) == 3:
            # print each word
            print word

def letter_words(input, length):
    """print the words of length that occur in the input"""
    # first split the input into a list
    in_list = input.split()
    # now loop through the list
    for word in in_list:
        # if word is 3 letters long
        if len(word) == length:
            # print each word
            print word            

4.4.4 A stop list

def sort_words_in_a_file(inputfilename, stoplistfile):
   """sort words in a file"""
   # first read in the stop list
   infile = open(stoplistfile)
   lines = list(infile)
   infile.close()
   # initialize stoplist to null list
   stoplist = []
   # for each line in the file add a stoplist entry
   for line in lines:
       stoplist.append(line.strip())
  
   # now open and read the lines from the inputfile.
   infile = open(inputfilename, 'r')
   lines = list(infile)
   infile.close()
   # this is the list of words, initially empty
   words = []
   for line in lines:
       # add the words in this line to the word list
       for wrd in line.split():
           if not wrd in stoplist:
               words.append(wrd)
   # now sort the word list
   words.sort()
   # and print the results
   for word in words:
       print word

4.5.1   The guessing game

87



88

def guess():
    """Guess the number"""
    # choose a random number from 0 - 100
    num = random.randint(0,100)
    prompt = 'What is your guess?'
    # get user guess
    a = int(raw_input(prompt))
    # while the guess isn't correct
    while a != num:
        if a < num:
            prompt = 'Too low. Try again'
        else:
            prompt = 'Too high. Try again.'
        # get another user guess
        a = int(raw_input(prompt))
    print "You guessed it!"

88


	4 Basic Python Programming: Some Practice and if

