
March 16, 2006 Linguist's Guide to Python http://zacharski.org/books/python-for-linguists/

1 Installing and Running Python

Python is available for free for most computer platforms including Microsoft Windows, Macintosh,
Unix and Linux machines. You can get further information about the different versions of Python at
http://www.python.org/download/. One of the frequent stumbling blocks for beginner programmers of
any language is successfully installing the programming language and learning the basic mechanics of writing
and running programs. Because of this I am going to provide you with a step-by-step Python installation guide.
Since most people use Microsoft Windows machines, I’m going to focus on installing and running Python on
Windows. Keep in mind that this set of tutorials is not specifically directed at Python for Windows. You can use
Python (and this set of tutorials) on any machine. If you are using Python in a school lab that already has Python
installed on its computers you can skip section 1.1.

1.1 Installing Python on your own Windows machine
You can download a free version of Python from
http://www.activestate.com/Products/ActivePython/

When you go to that site, you'll see the introductory page shown below, which has a “Free Download” link in a
box on the left. When you click on the download link it will take you to a registration page. If you want you can
enter your name and email address or you can leave it blank.

http://www.python.org/download/
http://www.activestate.com/Products/ActivePython/

2

When you press the next button, you will see a web page that looks something like this:

3

You will want to download the Windows/x86 MSI version of the latest build. To do so, scroll down until you see
Windows/x86, and click on the MSI link just below it.1 You will then be prompted for where to save the file and
you can choose a convenient location on you computer. I selected “My Documents.”

After you download this package you will need to install it by going to the location where you saved the file:

and double-clicking on the ActivePython icon:

 After you double click you will see the first of several installation dialog boxes:

1 Once you click on the MSI link, in addition to automatically downloading a file, you will see a web page titled ‘Now downloading’. This
page has information about the Microsoft Windows Installer package, which you will need to download if you have Windows 95, 98 or
NT.

4

Click next to proceed to the next dialog. Then select the radio button labeled “I accept the terms of the license
agreement’ and press the next button. The next screen (shown below) allows you to change some installation
options, but you can probably just click ‘next.’

The next screen indicates that the installer is ready to begin. Click “Install”.

5

The setup wizard will then install ActivePython. This process may take several minutes. After it is complete you
will see:

Press the ‘finish’ button. Congratulations! You just installed Python on your computer.

6

1.2 Writing and running Python programs.

There are several ways of writing and running Python programs using ActivePython. The method I prefer is to
run the program, PythonWin IDE. This program can be started—if you did the default installation—from the
start menu, under Programs ActiveState ActivePython 2.4 Pythonwin IDE. When you start the program
you’ll see something like:

You can type Python statements in the window labeled “Interactive Window” and immediately see the results:

7

In the above example, I typed in 2 + 2 and Python responded by displaying '4'. Instead of showing you all the
interactions with Python by using screen captures, I’ll use the following notation:

>>> 2 + 2
4
>>> 3 * 5 + 12
27

Here, as throughout the book, I’m showing Python code in the courier font. When I show interactive sessions,
I’m putting what you type in bold and the system response in plain text.

The >>> is the Python prompt—it indicates that Python is waiting for input. As you just saw, Python can act as
a simple calculator. Here are some additional examples:

>>> 12 * 5000 (The asterisk means ‘multiply.’)
60000
>>> (12 * 5000) / 52
1153
>>> print "Hi there"
Hi there
>>>

You will find this interactive mode very helpful, but for the most part you’ll be writing Python programs in text
files. This is similar to working with Microsoft Word or any text editor. Here’s how to do it. To work on a new
document you can either click on the new document icon in PythonWin (the blank sheet of paper icon in the far
left of the button toolbar):

8

or you can go under the file menu and choose ‘new’. In either case you will get a dialog box asking if you want
to create a new Python script or a new “Grep”. When you choose ‘Python script’ and click ‘OK’ you’ll get a new
window appearing in the PythonWin application. In that new window type

print "Hello there!"
print "Testing, one, two, three"

Notice that the words print are displayed in bolded blue and the text in quotes is displayed in an olive font.

PythonWin helps you write programs by showing words that are in its vocabulary in bolded blue. As you work
more in Python you’ll find this is very useful. For example, if you intended to type print and you typed pirnt
instead, you are apt to notice the error because the word is not in bold.

Now go ahead and save the document. Again, it’s similar to working with Microsoft Word. You can either click
on the save icon (the floppy disk) or select save from the file menu. You’ll be prompted for a name. Give it some
meaningful name. I chose my_first_program. When PythonWin saves the file, it adds a .py to the end of the
filename to indicate that it’s a Python file. Now, we can run the program by clicking on the run icon (the little
running person) or choosing run from the file menu. The following popup window will appear.

9

If you click ‘OK’ at this point, PythonWin will run your script myFirstProgram.py You should see the results in
the interactive window:

>>> Hello there!
Testing, one, two, three

These results show a funky detail about PythonWin—namely that one line of printed text is displayed in black
after the prompt ‘>>>’ and the next line of text is displayed in turquoise without the prompt. For now don’t
worry about this weirdness.

What happens if you wrote my_first_program.py yesterday and now you want to run it again today? You click
on the little running person (or choose run from the menu) and use the browse function in the above window to
find you script and execute it. If you wrote my_first_program.py yesterday and now you want to edit it, you
either can select ‘open’ from the file menu or click on the ‘open’ icon (the half-open file folder).

That’s it for the quick tour of Pythonwin. In sum, you can type statements directly in the Interactive Window,
and you can create Python scripts with the built in editor and run those scripts right in Pythonwin.

I like the Pythonwin environment, but if you prefer, you can run Python directly from a Windows command
prompt window, and create scripts using your favorite text editor. This method is similar to that for Unix and
Linux machines and is discussed on the companion website.

1.3 Getting started

In the previous section you saw how you could type statements directly in the Python interpreter:

>>> 2 + 2
4
>>> print 'Hello there!'
Hello there!

And you also saw how you could create a file with Python statements and execute that file. Throughout this
book, when I say let’s write a script I mean let’s create a file containing Python statements by opening a new
python script window (or by using a text editor). For now, let’s start by typing statements directly into the
interpreter. In fact, let’s start with a statement we already know:

>>> print 'Hello there!'
Hello there!

The line starting with print is a Python statement. The special word2 print indicates that the following value
should be displayed on the screen. In this case, the following value was "Hello there!", so that was printed.

2 In Python special words like “print” are called keywords.

10

Dissecting the line

print 'Hello there!'

Gives us:

print 'Hello there! '
Keyword Value

1.3.1 Strings
The value in this example is

'Hello there!'

This is called a string, which is defined as a sequence of characters enclosed in quotes. The quotes can either be
single or double quotes, but the opening and closing quotes must match. For example,

'Hello there!'
"Hello there!"

are fine but

"Hello there!'
'Hello there!"

are not (The first starts with a double quote and ends with a single quote and the reverse is true about the second
example).

What happens when you have double quotes as string delimiters and you have a double quote in the string? Let’s
give it a try:

>>> print "Pat wrote "Learn Python While You Sleep""
Traceback (File "<interactive input>", line 1
 print "Pat wrote "Learn Python While You Sleep ""
 ^
SyntaxError: invalid syntax
>>>

Python interprets the first quote, the one just before Pat, as the start of a string. It considers any characters
following that quote part of the string until it encounters another quote. Python finds a quote just before the word
Learn and considers it as marking the end of the string. Thus, it considers only the bold part to be the string:

"Pat wrote "Learn Python While You Sleep""

Python doesn’t know what to do with the rest of the line, and, as a result, displays the error message “invalid
syntax.” To prevent this we use \" (that is, two characters—a backslash, ‘\’, and a quote, ‘"’) to represent quotes
within a string. The Python statement:

>>> print "Pat wrote \"Learn Python While You Sleep\""

11

would display

Pat wrote "Learn Python While You Sleep"

The ‘\’ means ‘interpret the next character as a real genuine character.’

What do we do if we really want a backslash printed? In that case we use \\:

>> print "vp\\n: a vp missing a noun to its left"

displays

vp\n: a vp missing a noun to its left

Of course, since Python allows both single and double quote delimiters, you can also prevent problems by being
a bit smarter as to which pair you use:

>>> print 'Pat wrote "Learn Python While You Sleep "'
Pat wrote "Learn Python While You Sleep"

Since I want to have double quotes in the string I use the single quotes as delimiters. In the next example I want
to have a single quote used as an apostrophe in don’t so I use double quotes to delimit the string.

>>> print "I don't understand"
I don't understand

If we used double quote delimiters in the first example or single ones in the second we get very different results:

>>> print 'I don't understand'
Traceback (File "<interactive input>", line 1
 print 'I don't understand'
 ^
SyntaxError: invalid syntax
>>>

Errors
When you type an ungrammatical sentence in a word processor you don’t expect your computer to lock up, and
smoke to come out of it. You don’t expect your ungrammatical sentence to break your computer requiring a trip
to the computer repair shop. It’s no big deal to create error-filled text with a word processor. Similarly it’s not a
big deal to create a Python program containing an error—your computer is not going to break because you wrote
a program containing an error. Errors are no big deal. You fix them and go on. Feel free to experiment. If at
anytime reading these tutorials you wonder ‘what if’ just give your idea a try. There are errors that programmers
commonly make and throughout these tutorials I will be describing how to detect them.

As shown above, when you type an expression that contains a syntax error in the interactive window, Python
responds with an informative error message. Let’s take a look at what happens when there is an incorrect
expression in a script. First I create a new file by clicking on the file icon (the blank page icon) or by select
‘new’ under the file menu. In the new window I type

print 'I don't understand'

12

When I typed this example I see PythonWin’s automatic color coding mentioned above. I imagine you reading
this text as a printed non-color document so I’m going to represent the different colors by different fonts. Using
this convention the line looks something like:

print 'I don't understand'

PythonWin sees the string as I don, terminating at the single quote after that, and cannot process t understand.
Hopefully, this color coding will help me eliminate some of my errors, but let’s say I don’t notice this error and
save the file as my_second_script.py (remember that Python automatically adds the ‘py’ extension to the
filename).
When I try to run it (the running man icon) I see the following:

Notice the error message on the bottom of the PythonWin window: Failed to run script – syntax error – invalid
syntax. PythonWin also attempts to place the cursor at the location of the error. In this case it places the cursor
immediately after the apostrophe in don’t.

It’s extremely common for beginning Python programmers to ignore messages that occur in this position on the
bottom of the window. When your scripts get just a bit longer, failing to notice this error message can lead to
hours of frustration. It’s good to get in the practice of glancing down to this message area every time you run a
script. When you see return exit code zero:

you know your script executed without errors.

Python scripts can contain multiple lines

13

Let’s continue talking about Python scripts (writing statements in a file and then executing that file) A Python
script can consist of a number of Python statements, which are executed in turn. Let’s say we have the following
script in a file called pat.py

print "Pat"
print "Hillary"

Let’s run it by using the Pythonwin run command as described above. The result will be

Pat
Hillary

Let’s play around with this a bit. It will seem silly now, but shortly what we learn through this playing will
become useful.

Suppose I wanted the words Pat and Hillary to appear on the same line. The obvious and best solution would be
to use one print statement:

print "Pat Hillary"

But there’s an alternative. If we add a comma to the end of a print statement it means “add a space and stay on
the same line.” So,

print "Pat",
print "Hillary"

(with a comma after the first print statement) prints:

Pat Hillary

Conversely, if I wanted to use one print statement and have the names appear on different lines I can use the
special character sequence \n which means go to a new line (that is, the ‘\n’ represents the newline character).

>>> print "Pat\nHillary"
Pat
Hillary

Now, look at the following example and see if you can determine what the output will look like:

print "Person ",
print "Phone number"
print "--------",
print "----------"
print "Pat ",
print "541-1360"
print "Hillary ",
print "646-6520"
print "Kim ",
print "646-3307"

It looks like the following:

Person Phone number

14

-------- ----------
Pat 541-1360
Hillary 646-6520
Kim 646-3307

1.3.2 Names
In Python, you can give names3 to bits of information. A name in Python must begin with a letter or an
underscore ‘_’. The remaining characters can be letters, digits, or underscores. By letters I mean the letters a-z
and their uppercase equivalents. No fair using Σ or even piżmo!!

The following are examples of allowable names:

My_phonenumber
test1
test2
NounPhrase

The following names are not allowed:

2ndtest the first character cannot be a digit
John’s_Phonenumber the apostrophe character is not allowed in a name
Çie the character ‘Ç; is not allowed

Your names can be anything you like. If in one of my examples I use part_of_speech as a name, but you
can use pos or x39. My part_of_speech is not ‘special’ in any way—it’s just a name I invented. Of course
it helps to pick a name that is meaningful enough to help you remember what you were doing in that part of your
script. The name x39 is not that helpful when you are trying to debug, but part_of_speech, or even pos
is. A common naming convention is to use only lowercase letters and the underscore character, for example, to
use part_of_speech rather than partOfSpeech. I will use this convention throughout this book.

Values
Names can be given to all sorts of values. For now, let’s take a look at strings and numbers. We assign a name to
a value by using the assignment operator, ‘=’. Let’s start by typing some things into the Python interpreter.

>>> word = 'glupstwo'
>>> part_of_speech = 'noun'
>>> gender = 'neuter'
>>> translation = 'Stupid thing'
>>> frequency = 512

Notice that when we typed a print statement we immediately received a response from Python:

>>> print "Pat" our input
Pat Python’s response

When we assign a name to a value, Python doesn’t generate a response:

>>> part_of_speech = 'noun'

3 You may also hear names called “variables”.

15

>>> no response other than presenting a prompt

Internally, Python has associated the name with the value (in this case the name ‘part_of_speech’ with the value
‘noun’), but externally, we just don’t see it.

To get the value associated with a name we just use the name itself. For example, after I typed in the above I can
do the following:

>>> word
'glupstwo'
>>> part_of_speech
'noun'

(I’m typing what is in the bold text and the Python interpreter is responding with what is in the non-bolded text.)
Let’s construct a script that does something similar. That is, create a new document in PythonWin and type in the
following.

word = "glupstwo"
part_of_speech = "noun"
gender = "neuter"
translation = "stupid thing"

print word
print part_of_speech

Now save the document. For example, let’s say we save it with the name new_script.py. Now, let’s run the script
by pressing the ‘run’ icon (the running man). You’ll see the dialog box:

Now press ‘OK’ to run the script and you’ll see the following results in the Interactive Window of the
PythonWin application:

glupstwo
noun

Can you predict what output you’ll see if you run the script:

word = "glupswto"
part_of_speech = "noun"
gender = "neuter"
translation = "stupid thing"

print word,
print part_of_speech

16

3.3.3 String addition

Python’s addition operator ‘+’ joins together two strings. So

The added string is the same as
"walk" + "ing" "walking
"Accusative " + "Case" "Accusative Case"

In this way we can change the block of print statements:

print word,
print part_of_speech

 to

print word + " " + part_of_speech

If we forget to use the plus sign we get an error:

>>> print word + " " part_of_speech
Traceback (File "<interactive input>", line 1
 print word + " " part_of_speech
 ^
SyntaxError: invalid syntax
>>>

Here I forgot to put a ‘+’ between the " " and the part_of_speech.

3.3.4 Common numerical operators
Now we will take a quick look at the typical operators you can use for numbers. The following table shows these
basic operators.

Numerical Operators Result Operation
3 + 2 5 Addition
3 - 2 1 Subtraction
3 * 2 6 Multiplication
3 / 2 1.5 Division
3 % 2 1 Modulo4

Python knows about different types of numbers. Of importance to us right now are two types: integers (for
example, 2, 214, -5,291) and real numbers (0.0, -777.1, 6.25).

Just as a verb can be intransitive, transitive, or ditransitive, Python operators take a specific number of
arguments.5 The operations in the above table take one or more arguments and return a result. For example, in
the first row of the table the addition operation is taking two integers (3 and 2) and returning an integer result (5).
The key point here is that what Python returns (whether an integer or a real number) depends on what it

4 The remainder when you divide 3 by 2.
5 Anyone who has studied subcategorization knows that things are much more complex than I describe. For example, Thompson and
Hopper suggest that there is a continuum of transitivity. Similarly, the argument structure of Python commands is not as simple as I
outline here. Later chapters will discuss these complexities.

17

received as arguments. If it receives two integers as arguments, these operations will return an integer. If they
receive 2 real numbers, they'll return a real. Finally, if these operations receive one integer and another real, they
will return a real. This is particularly important for division. If we divide one integer by another we will get an
integer result:

>>> 5 / 2
2

If you want a real number result you need to have one of the arguments be a real:

>>> 5 / 2.0
2.5
>>> 5.0 / 2
2.5

Let’s go through a simple example. Say there are 2 teaching assistants for a linguistics class. We create a name
“ta” with the value 2:

ta = 2

There are 27 quizzes to grade

quizzes = 27

We want the TA’s to grade an equal number of quizzes:

to_grade = quizzes / ta

and now let’s figure out the remainder:

remainder = quizzes % TA

the TAs (let’s call them ta1 and ta2) should grade

ta1 = to_grade + remainder
ta2 = to_grade

Let’s now put this together into one program:

ta = 2
quizzes = 27
to_grade = quizzes / ta
remainder = quizzes % ta
ta1 = to_grade + remainder
ta2 = to_grade
print "TA #1 should grade:",
print ta1,
print "quizzes"
print "TA #2 should grade:",
print ta2,
print "quizzes"

This results in the output

TA #1 should grade: 14 quizzes

18

TA #2 should grade: 13 quizzes

You may be wondering why I didn’t use Python’s append operator (‘+’) and do something like

print "TA #1 should grade: " + ta1 + " quizzes"

The ‘+’ operator does different things depending on its arguments. If its arguments are strings, it appends them
together:

>>>"walk" + "ing"
walking

>>>"1" + "2" + "3"
123

If the arguments to ‘+’ are numbers, it performs addition:

>>>1 + 2 + 3
6

hint: Remember this distinction between "1" + "2" + "3" and 1 + 2 + 3. It will help you answer a puzzler
that is coming up at the end of this tutorial.

Once again, when its arguments are strings ‘+’ appends the arguments, but when both are numbers it performs
addition. With that in mind let’s look at the line

print "TA #1 should grade: " + ta1

The value of ta1 is a number, 14, so the line is equivalent in some way to

print "TA #1 should grade: " + 14

One argument is a string and the other a number. This is a case that the ‘+’ operator cannot deal with and this
statement generates an error. Shortly we will be examining ways around this problem. For now we can get
around this problem by using multiple print statements with commas as illustrated above.

3.3.5 Comments
Comments are bits of text in your program that are intended to be an aid to you and others looking at your
program. Comments are preceded by the ‘#’ symbol. Python ignores everything between the ‘#’ and the end of
the line. For example, if you need to hand in a program you wrote for a class you are taking, you may want to
put a ‘header’ in your program:

Assignment 1.1
‘The healthy linguist’

8/23/2005
Hillary McMaster
#

You may also want add little notes elsewhere:

19

pos = "n" # the current part of speech

Comments will be much more useful as your programs get more complex. One cool thing about using
PythonWin, is that it color codes various things. We’ve already seen that the names of Python’s special keywords
(like ‘print’) are displayed in blue and strings are displayed in olive. Comments are displayed in green. This
color coding improves the readability of your program.

3.3.6 Getting input from the user
We can get input from the user by using the function raw_input(). Let’s try this out and then I’ll explain the
details. In PythonWin create a new document (program) and type in the following:

name = raw_input('Enter your name: ')
print 'Hi, ' + name + ', nice to meet you!'

Save this program using whatever name you’d like. When you run it, the following dialog box will appear:

Let’s say we type in the name ‘Ann’ and press ‘OK’. Now, in the PythonWin Interactive Window (this window
may be blocked by the window containing your code) we should see:

Hi, Ann, Nice to meet you!

Pretty cool.

Let’s take a look at the first line of your program:

name = raw_input('Enter your name: ')

That “raw_input” thing is a function. Just like operators, functions in Python take a certain number of
arguments. The raw_input function takes one argument, a string that will serve as a prompt to the user. This
prompt can be any string:

name = raw_input('Enter your name: ')
name = raw_input('Name: ')
name = raw_input('Can you please enter your name: ')

The function raw_input, opens up a dialog box containing the prompt string and a text field where the user can
type in a response.6 When the user presses the ‘OK’ button, raw_input returns the response as a string. That is, if
the user types in “Ann” and presses ‘OK’, raw_input returns the string “Ann”. You can think of it as:

name = raw_input('Enter your name: ')

getting converted to:
6 This function, raw_input, does slightly different things on other types of computers. For example, on Unix it does not open a dialog
window, it just presents a command line prompt.

20

name = 'Ann'

This now looks like the assignment statements we looked at earlier, with the value ‘Ann’ being given the name
‘name’.

This isn’t a wonderfully sophisticated user interface—it is a bit rough—but at least it will get us started doing
some fun stuff.

Let’s look at another example:

num1 = raw_input('Enter a number: ')
num2 = raw_input('Enter another number: ')
print num1 + num2

When I run this program I enter 12 as the first number and 34 as the second. What gets printed in the Interactive
Window may surprise you:

1234

Why does this get printed and not the answer I expected, 46? (I gave you a hint earlier in this tutorial.)

Try to answer this on your own before looking at the next paragraph.

It’s because raw_input treats everything the user types in as a string. When the user types in 12, raw_input
returns the string '12' and when the user types in 34, raw_input returns the string '34'. Then when we perform the
operation:

'12' + '34'

the ‘+’ is interpreted as the append operator and we get the string ‘1234’.

Luckily, Python has a special function that converts strings to numbers—that is, it will convert the string '12' to
the number 12. The function is called int and it takes one argument, a string, and returns a number (an integer).
So we can type the following in the interactive window:

>>> int('12')
12 (returns the number 12)
>>> print '12' + '34'
1234 (appends the strings and then prints the result)
>>> print int('12') + int('34')
4 (converts the strings to integers, adds them, and then prints the result)

Now, armed with this additional knowledge, revise this script and run it:

num1 = raw_input('Enter a number: ')
num2 = raw_input('Enter another number: ')
print num1 + num2

[if you are stumped see hint 1 at the end of this tutorial]

21

Exercise 1.1 Healthy linguists
As you know, it’s important that linguists take part in aerobic exercise. Now, as I’m sure you are all aware, there
are two dangers related to linguists doing aerobic activities. The first occurs when 2 or more linguists go cycling
or running. They start off humming along nicely; the conversation turns to some linguistic issue (e.g., parasitic
gaps) and all of sudden the linguists’ energies are directed to argumentation and the exercise pace drops
dramatically. The other danger stems from the overachieving quality that many linguists have. Many a promising
linguist who looked like she was on the high road to linguistic stardom lost it all when she decided to give 120%
effort running or cycling, got her heart rate up to Lance Armstrong sprint levels, and had her heart explode. 7 As
you may remember, this led to the Linguistic Society of America’s Council of Physical Fitness recommendation
that linguists should always exercise with a computer science student to serve as pacer. Unfortunately, not all of
us have access to computer science students and we need to take it upon ourselves to exercise at an appropriate
level. We can do this by exercising in a particular heart rate range. A rough rule of thumb for computing
maximum heart rate is:

220 – age

The exercise range is from 70-85% of the maximum heart rate. For example, consider a person who is 36 years
old. 220 minus the age (36) is 184. 70% of 184 is 128 and 85% of 184 is 156. So the exercise range is between
128 and 156.

What does this have to do with Python?
Well, I’d like you to write a program that will ask the user for the following input:

Enter name:
Enter age:

Ann, a 36 yr. old linguist, should exercise for 30 minutes with a
heartrate between 128 and 156.

Okay, that’s the exercise. Good luck!

If you want to see one way of doing this problem see the solutions section at the end of this tutorial or you can
download a file containing the solution code at the companion website
(http://www.zacharski.org/python/solutions).

7 This is just for dramatic effect. I know of no linguist who died this way.

22

Zipping along versus presenting all the gory details
My approach in writing this set of tutorials is to zip along and present you with enough
Python details for you to start doing interesting things. I am not presenting an
exhaustive description of Python—in other words, I’m leaving out stuff. Some of the
gaps I’ll fill in during later tutorials. If at any point you want to know more about some
aspect of Python you may want to consult the reference material accessed from the
‘help’ menu of PythonWin.

Zipping along versus plodding along
It’s been my experience that most beginners get very confused over the minutia that is
most often ignored in intro to programming courses and books. For this reason, I have
started out very slowly and given detailed instructions on how to install Python and
write and run your first programs. As you get more comfortable with Python and with
the PythonWin programming enviroment I’ll be speeding things up.

Comments
In order to make this series of tutorials better, I am very interested in getting your
comments. If at any point things are unclear, or if at some point you write a program
that you are convinced should work but for some inexplicable reason does not, email
me. My email address is ron@zacharski.org.

22

23

Hints:

1) Just change the last line to print int(num1) + int(num2)

Solutions

Exercise 1.1 Healthy linguists

one possible solution for exercise 1.1
(the healthy linguist)
#

first get input from user
name = raw_input('Enter name: ')
age_string = raw_input('Enter age: ')

convert the age string to a number
age = int(age_string)

Maximum heart rate
max_hr = 220 - age

low range
low = max_hr * .7

high range
high = max_hr * .85

Now print response
print name + ', a ' + age_string + ' yr. old linguist,',
print 'should exercise for 30 minutes'
print 'with a heartrate between %d and %d' % (low, high)

23

	1 Installing and Running Python
	1.1 Installing Python on your own Windows machine
	1.2 Writing and running Python programs.
	1.3 Getting started
	1.3.1 Strings
	1.3.2 Names
	3.3.3 String addition
	3.3.4 Common numerical operators
	3.3.5 Comments
	3.3.6 Getting input from the user

	Hints:
	Solutions

